Simple Linux Panel
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mdserver-web/plugins/cryptocurrency_trade/ccxt/strategy/hammer_robot.py

139 lines
3.6 KiB

3 months ago
import ccxt
import talib
import sys
import os
import time
import pandas as pd
import pandas_ta as ta
from pprint import pprint
sys.path.append(os.getcwd() + "/plugins/cryptocurrency_trade/strategy")
import common
# cd /www/server/mdserver-web && source bin/activate
# python3 plugins/cryptocurrency_trade/ccxt/strategy/hammer_robot.py run
pd.set_option('display.max_rows', None)
exchange = common.initEx()
exchange.load_markets()
entry_rsi = 30
exit_rsi = 40
symbol = 'XRP/USDT'
timeframe = '15m'
tf_mult = exchange.parse_timeframe(timeframe) * 1000
def indicators(data):
data['rsi'] = data.ta.rsi(length=10)
data['ema'] = data.ta.ema(length=200)
# close_p = data['close'].values
# data['rsi'] = talib.RSI(close_p, timeperiod=10)
# data['ema'] = talib.EMA(close_p, timeperiod=200)
return data
def check_buy_sell_signals(df):
last_row_index = len(df.index) - 1
lastest_rsi = round(df['rsi'].iloc[-1], 2)
lastest_price = round(df['close'].iloc[-1], 5)
lastest_ema = round(df['ema'].iloc[-1], 5)
lastest_ts = df['timestamp'].iloc[-1]
msg = "lastest_rsi:" + str(lastest_rsi) + " < entry_rsi:" + str(entry_rsi)
msg += ",lastest_price:" + \
str(lastest_price) + " > lastest_ema:" + str(lastest_ema)
print(msg)
long_cond = (lastest_rsi < entry_rsi) and (lastest_price > lastest_ema)
if long_cond:
print("买入")
order = exchange.create_market_buy_order(symbol, 1)
closed_orders = exchange.fetchClosedOrders(symbol, limit=2)
if len(closed_orders) > 0:
print("closed_orders:", closed_orders)
most_recent_closed_order = closed_orders[-1]
diff = lastest_ts - most_recent_closed_order['timestamp']
last_buy_signal_cnt = int(diff / tf_mult)
exit_cond = (lastest_rsi > exit_rsi) and (last_buy_signal_cnt > 10)
if exit_cond:
print("卖出")
order = exchange.create_market_sell_order(symbol, 1)
return
def get_hammer(df, lenght):
# 影线要大于body的多少倍
factor = 2
hl_range = df['high'] - df['low']
body_hi = df.apply(lambda x: max(x['close'], x['open']), axis=1)
body_lo = df.apply(lambda x: min(x['close'], x['open']), axis=1)
body = body_hi - body_lo
body_avg = ta.ema(body, lenght=lenght)
small_body = body < body_avg
# 上下影线站body的百分比
shadow_percent = 10
# 上影线
up_shadow = df['high'] - body_hi
dn_shadow = body_lo - df['low']
has_up_shadow = up_shadow > shadow_percent / 100 * body
has_dn_shadow = dn_shadow > shadow_percent / 100 * body
downtrend = df['close'] < ta.ema(df['close'], 50)
bullish_hammer = downtrend & small_body & (body > 0) & (
dn_shadow >= factor * body) & (has_up_shadow == False)
return bullish_hammer
def runBot():
bars = exchange.fetch_ohlcv(symbol, timeframe=timeframe, limit=200)
df = pd.DataFrame(bars[:], columns=['timestamp',
'open', 'high', 'low', 'close', 'volume'])
# format='%Y-%m-%d %H:%M:%S',
df['dt'] = pd.to_datetime(
df['timestamp'], unit="ms")
df['hammer'] = get_hammer(df, 10)
lastest_hammer = df.iloc[-1, -1]
lastest_price = df.iloc[-1, 0]
print("lastest_price:" + str(lastest_price))
print("lastest_hammer:" + str(lastest_hammer))
print(df.tail())
if lastest_hammer:
print("购买,做多")
notifyMsg("购买,做多")
def longRunBot():
common.notifyMsg("任务开始")
while True:
runBot()
time.sleep(10)
if __name__ == "__main__":
func = sys.argv[1]
if func == 'run':
longRunBot()
else:
print('error')